Announcement: Human Augmentation—New Technology Area

Explorer introduces a new technology area: Human Augmentation. Emerging human-augmentation technologies will aid healthy people as well as people with reduced abilities, and are poised to be highly disruptive across society and many industries—but their use will raise many questions over how the law, regulations, and ethics should apply. Read more


About This Technology

3D printing is a layer-by-layer production process that creates solid three-dimensional objects from the bottom up. Some people in the industry use the related term additive manufacturing. This layer-by-layer production makes use of 3D-imaging technology, computer-aided-design software, and computer-controlled-deposition processes that deposit and then consolidate materials. 3D printing is the three-dimensional equivalent of printing ink on paper, except that instead of ink, the materials are typically thermoplastics, metals, and ceramics, though printing biological components is a rapidly growing area of research and development. The process of 3D printing is in contrast to traditional subtractive-manufacturing methods such as drilling, cutting and machining, and the ability to produce objects from a CAD file enables rapid part and model manufacture without the need for traditional tools or dies. What makes 3D printing a disruptive technology is its ability to provide high levels of customization and to produce more complex and small numbers of objects much more cheaply than is often possible with traditional manufacturing approaches.

The early commercialization of 3D printing was in rapid prototyping (or modeling), and this application is still important for 3D printing. Customers of rapid-prototyping machines appreciated the ability to turn around new models and designs for testing quickly and did not need them to be robust. However, the more recent expansion of 3D-printing techniques and materials to encompass thermoplastics and metals is enabling a transition from rapid modeling to rapid tooling and rapid manufacturing, in which the final printed object can see use in real-world applications. Applications exist across virtually all industry sectors—such as aerospace, the automotive sector, consumer goods, defense, electronics, health care, recreation, and toys—but in each application the impact of the technology will depend on the availability of compatible printable materials. Despite the expansion of material choices, cost, speed, material quality, and structural integrity remain limiting factors in industry acceptance of 3D printing.

3D printing has the potential to disrupt industries and change the manufacturing paradigm in situations in which speed, customization, and short production runs are key features. 3D printing may enable artifacts and combinations of materials that are hard if not impossible to produce with other methods: electronics integrated into biological tissue, for example. Low-cost machines, local service bureaus, and access to online stores of 3D object files can enable new business models of production and empower individuals to produce objects to order without necessarily having any manufacturing expertise. However, users' ability to scan and then print any object could lead to copyright infringement and legal disputes; the 3D printing of usable guns is one example. Integrating imaging technology and 3D printing at the point of use could upset traditional supply chains, especially where speed of production is a key need. Arrays of 3D-printing machines could, in theory, lead to large numbers of micro factories that produce in volume, disrupting other large-scale manufacturing processes. This Technology Map focuses on the industrial and enterprise use of 3D printing rather than on consumer printing.